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Background - Approaches to modeling correlation matrices

A Consider a real-valued N-dimensional time series {y,}+ez and a sequence of
corresponding information sets Fi—1 = {y,_1,¥;_o,- ..}, satisfying

y.=%/"n,, N, ~i.i.d.(0,Iy), (1)
and
Y. =D:R:D:,  D:=diag(cii¢t,...,onn:e),  Re=(pij;e)ij
We focus on modelling the dynamics of the conditional correlation matrix R:.
One of the challenges is the parameterization of the dynamic R;.

The matrix R; has to be positive definite with unit diagonal.
The first approach is that of Engle (2002):

> > > >

Re = (di2gQ)"2 Q. (di2gQ@)"2, Q.= (1—a— B)S + owe! +5Q,s,

with u; = D[Iyt, and a4+ 8 < 1.
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Some alternatives. . .

A A second approach casts the correlation matrix entries into hypersphere
coordinates; see Rapisarda et al. (2007), Creal et al. (2011), and Buccheri
et al. (2021).

Drawbacks. . .
A The correlation constraints are complicated.
A The stationarity and ergodicity conditions of these models are not well known.

A The asymptotic properties of MLE are unknown.

A possible solution. . .

A Recently, Archakov and Hansen (2021) introduced the possibility of modeling
the strictly lower-half of the log-correlation matrix entries.

A The approach is extended to a dynamic setting by Hafner and Wang (2021)
using score-driven dynamics.
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However. . .

A All of these approaches treat the dynamics of R; in its matrix form in order to
ensure positive definiteness.

A A much more flexible approach would be to model each of the pairwise
correlations separately.

= Problem: This pairwise approach typically does not work as it need not
produce a positive definite correlation matrix.

Our solution. . .

A In this paper: We solve this by looking at pairwise patterns of partial
correlations using the work of Anderson (1958) and Joe (2006).

A We need not worry about positive definiteness: Partial correlation
coefficients can be modeled independently and pairwise way in (—1,1).

Advantages:

A Computational and stability aspects, feasible theoretical and statistical
properties, and significant gains in empirical performance.
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The strategy: From partial correlations to correlation matrices

A A conditional partial correlation p; jj1, ;. for a set of indices Lj with i,j & Lj is
defined as the correlation between y; , and y, ,, conditional on F;_1 and on
Yig e where Yije is a vector containing the values of y, . for k € Lj.

A Define Vit = pij;e — Riyy R 1;tRuz.e. The link between the pairwise and

ijs

partial correlations is obtalned from Anderson (1958) and Joe (2006):
pijit — RieR} Lyt Rt

i
Vit

; (2)

PijlLj it =

.V,

JilLiit

fori=1,...,N—1,j=i+1,...,N,and L ={i+1,...,j — 1}, where

1 RiLgze  pijit
Corr(.yi:j;t) = RLUH t RLU,L it RijJif ) (3)

Pij;t R; JsLijit 1

-
and Yij;t = (.Vi,tv cee 7yj,t)
A Inverting (2), we easily obtain the Pearson correlation:

pij;t = RiyL tRL Ly tRLUJt + PijiLy;e

ijs

Vi e Vijieg e

Dynamic Partial Correlation Models / Enzo D’Innocenzo



Dynamic Partial Correlation models
0e00

A The N — 1 pairwise correlations and the 0.5(N — 2)(N — 1) partial correlations
can vary independently in the interval (—1,1).

A By using the D-Vine structure proposed by Joe (2006), the resulting Pearson
correlation matrix will always be positive definite.
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Figure: D-Vine
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A The key step: We assume that y, | Fi—1 ~ t (0, R¢,v), and so, for j > i the
distribution of (y,-’t,y”)T | Yo Fe-1withy, = {¥x t} ket is Student’s t

Yit 1/2 1/2
(.Vjt |yL,-j,t7]:t*1 ~t HijiLg it Di,j|L,-j;tRi,j\L,-j:tDi,ﬂL,-j;t7 Vijity ) > (5)
where R,-7J-|L,.j;t is the conditional partial (bivariate) correlation matrix
R. . o 1 PijILy;t
ijlLjit — . 1 ’
Pij|L ;¢

Viji; =V + #Lij=v+j—i—1is the degrees of freedom,

Rip.t -1
KijiLg e = <Rj,L;;t Rijiye Yie (6)
is the location, and
T p-1
(v =2)(v+ yL,-j,tRL,vj,L,vj;tyL,-j,t) V,-,,-‘L,.j;t 0
Diji;ie = — 0 V. ()
V- VijlL; JlLijit

a diagonal matrix; see Roth (2013) or Ding (2016).
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Score recursions

A Weuse pj i1, ¢ = &(fi i, ¢) for fijj1, .+ € R, and define y, ., = (y,—yt,yjyt)T for
Jj>iandlet p(y;; .|y, . Fe—1) be the Student’s t pdf corresponding (5).

ijs

A Then we have the score expression

8|°gp(yi,j;t | yL,-j,tv]:ffl) 1 R-1 R-!
St = Of: ... T il ( "J‘LU?‘@ ”j‘Lij‘t) %
l,j\L,-j,t

vec (w; ; .D71/? e — e — "p72 _ R
byt Sy e \Yidee = Fijigie ) \Yigie = Bijig e Pl it idlLjit )

fori=1,...,N—1,j=i+1,...,N,and L ={i+1,...,j — 1}, with
y"vj‘Lij+2
-1/2 —1 —1/2 >

o A T s
V:,J\L,-j"‘(y:,j;r /"quL,-j:t) Di,j\L,j;: ijlLyt i,j|L,-j;r(-V:,/:r /":,JIL,-,-;r)

Gijiuyie = Ovec(R i)/ Of ji e = & <ﬁ',j|L,-j;r) (01 1 0",

A This leads to the score transition equation

WijlLg it =

frilLy s e+1 = Wiy + Bijiny fjiiy e + @iy Sijieg ;e (8)
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Maximum likelihood estimation (MLE)

A Naturally, the true time-varying partial correlation processes
{pijit;;theez = {8(fiji; +) }rez are unobserved.

A As our model is observation driven, we can easily replace them by their
o . - - 2 T
initialized filtered counterparts {p; ji1;(0)}e=1 = {g(fiji;¢(0))}e=1-

A The likelihood is known in closed form as

7,(0) = {Iogr(#) - Iogl'(%) - g log (v — 2)7)

1 N v+ N yTﬁ’t(O)_ly
— —log|R — 1+t =t
5 o8 Ri(0)] + 5 M tog (14 RO )

where 6 contains v, WijlLg Ly IBI,jIL,-,-x fori=1,...,N—1and

j=i+1,...,N, and {f\’t(O)}tT:l contains the filtered correlation matrices.
A The likelihood in (9) can be optimized numerically to yield the MLE

01 = argmax L1(6). (10)
6co
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Stationarity and ergodicity

A To establish stationarity and ergodicity of y,, we consider the model as a DGP.
A The key assumption: For i =1,...,.N—1landj=/i+4+1,..., N, let

) <e

by = €2 - (%(V"J\Lij +2)b; — 1), and b; an i.i.d. sequence of Beta(2, vijit;) RVs.

E [Iog max (‘6i,j|L,-j — aijji; - bl

2
Bijiy — @iy - (1 —€7) - be

Proposition (Strict Stationarity and Ergodicity)

Let Ry denote a fixed initial correlation matrix with implied partial correlations
ﬁi,jIL,-,- .1 and their transforms f,-,j|L,.j .1. Then, the solutions f,»,J-|L,.j .+ of model
(5)(8) for t € N, initialized at f; jj; ;1 fori=1,....,N—1,j=i+1,...,N,
converge e.a.s. to unique strictly stationary and ergodic solutions {f,-,j|L,.j theez.
In addit.ion, the partial correlations ﬁ,-,j‘L{j o= g(?i,j\L,-j_: :) and the Pears.on. .
correlations p; .+ converge e.a.s. to their unique stationary and ergodic limits
{pijity;eeez = {&(fiji; ¢) Yeez and {pij;t}eez.
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Invertibility

A To formulate the result, we need to introduce the demeaned and standardized
bivariate observation vectors y;j‘Lij;t(B) as

Yisitye(8) = Dijiuy 0™ (¥ij.e = by 1(0)) (1)

A These standardized observations make up the main input of the bivariate
conditional Student'’s t distributions in (5).

A They depend on the bivariate correlations between the elements of i, € Lj,

i.e., on Ry, 1, which have to be estimated before the dynamics of p; ji; ;¢

A We therefore also introduce the perturbed counterparts }A'i*,jILg .+(0) of
y:j‘Lij;t(H), where we replace the elements of Ry;,1;. by those of Ry, 1,::.

ijs s

A We also distinguish three different filtered sequences:
@ The filter ?,-J‘Ll_j;t(e), initialized at f; jj; .1 an taking y;j‘LU;t(e).
® The filter f,-J‘LI.j;t(O), initialized at ?’-J‘Lij;l but taking the SE yl.*j‘L__,t(G).
JILij

® The sequence {fi,j|L,-/;t(9)}teZ- is the uninitialized SE limiting filter.
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Invertibility

A The MLE procedure can only use the perturbed y*(6) that use all previous
pairs of correlation estimates, and produces ?,-,ﬂLij;t(O) rather than f; ;.. +(0).

A Only for j — i =1 we observe y*(0) directly.

A For j — i =k > 1, the score recursions for the filter also use the initialized
sequence f,-,j‘Ll.j;t(O) forj—i=1,...,k—1, which are not stationary and
ergodic. As a result, we cannot apply Bougerol (1993).

= The way out: If the filters ?,',jl[_ij .+(0) for j — i < k converge exponentially fast
and almost surely to their stationary and ergodic limits ﬁ-,ﬂLij;t(G), then we can
use the results on perturbed SREs from Straumann and Mikosch (2006).

A In summary: To study the asymptotic properties of the MLE 01, we need to
study the stochastic limit properties of the filtered processes {f,»}HLU;t(O)}tT:l.
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Invertibility

A The key assumption: The set ® C R? is a compact parameter space
satisfying v > 24§ for some 6 > 0 and «;jj;, #0 fori=1,...,N—1 and
j=i+1,...,N, with

asi,j\L,-j;t* (fvy:”LUt(g)’e)

of

E | sup suplog |8 i1, + i jie; - < 0. (12)
6cO f

Proposition (filter invertibility)

The filter processes {?iJIL,-,- .+(0) }ten initialized at fixed values ?,-,ﬂL,.j .1 converge
exponentially fast almost surely to the unique stationary and ergodic sequences
{fijiL;;+(0)}eez uniformly over the parameter space ©, that is

= e.a.s.
sup (£ 1, +(0) — fi,j\L,-j;t(e)‘ —0,
6co
A e.a.s.
sup ‘pi,j|L;J-;t(0) — Pi,j\L,j;t(e) — 0,
0co
e.a.s.

sup |pij.+(0) — pij;+(8)] === 0,
0ce

ast — oo.
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Asymptotic properties of the MLE

Theorem (Strong consistency and asymptotic normality of the MLE)

Under mild regularity conditions, the MLE is strongly consistent
0r 2 6, as T — oo,
and asymptotically normal
VT(87 — 60) = N(0,Z*(60)),

where Z(0o) is the Fisher’s Information matrix evaluated at the true parameter
vector @q, that is Z(0o) = —E[V2L(8)|e=s,]-
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Empirical illustration
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Figure: Daily returns on the three main risk factors and the twelve industry portfolios

Note: The period is 03 January 1980 to 31 December 2021. The vertical lines indicate the 4th of
January 2010, i.e. the first trading day of 2010 and the start of the out-of-sample period.
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Empirical illustration - In sample

Note: the PCorr, t-GAS, and t-cDCC models are estimated over the sample 03 January 1980 to
31 December 2009. The log-Lik indicates the differences in log-likelihood value at the optimum.
MSE and MAE relate to the differences in mean squared and mean absolute pricing errors, e, =
e — ’yMkt’t(rtht — rtF) — YsmB,t SMBy — Apmr,: HML:, where all return series are volatilty filtered.

PCorr versus t-GAS PCorr versus t-cDCC

log-Lik MSE MAE log-Lik MSE MAE
NoDur 21.775 -0.001 -0.001 91.655 -0.001 -0.001
Durl 31.873 -0.002 -0.002 84.597 -0.001 -0.001
Manuf 21.858 -0.001 -0.002 64.218 -0.001 -0.001
Enrgy -0.958 -0.004 -0.002 88.431 -0.004 -0.002
Chems 40584 -0.003 -0.002 94.130 -0.002 -0.002
BusEq -46.711 0.003 0.002 64.127 0.002 -0.001
Telcm 32.543 -0.003 -0.003 110.860 -0.001 -0.002
Utils 0.112 0.006  0.003 86.958 0.006 -0.003
Shops 28.824 -0.002 -0.002 83.624 -0.001 -0.001
Helt 23.673 -0.003 -0.001 91.652 -0.002 -0.002
Money -30.370 0.003 0.002 76.455 -0.001 -0.002
Other 50.310 -0.002 -0.002 89.556 -0.001 -0.002
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Empirical illustration - Qut of Sample

This table contains the estimates of a{VIOd for Mod € {PCorr,t — GAS,t — cDCC} in the regression model rit = ag/’Od + a{w"d .
;i,\,/ItOd +oujt where ?/M;’d is obtained (recursively) using one-year-ahead estimates of Rt and YMKT ,t* YSMB,t+ and YHML,t- A x,

#%, or * * * indicates rejection of Hy : aMod _ 0, aMod _ 1 at the 10%, 5%, and 1% significance level, respectively. The MCS
column indicates whether the model lies in the model confidence set of Hansen et al. (2011) based on tracking error MSE.

PCorr t-GAS t-cDCC
aPCorr mcs A CAS mcs af—eDCC mcs
NoDur 1013 v 0.987 0.966
(0.013) (0.013) (0.013)
Durbl 1018 v 0956 ** 0.984
(0.013) (0.013) (0.012)
Manuf 1012 v 1.001 0.975  *x
(0.007) (0.007) (0.007)
Enrgy 1.053 ** v 1.005 0.967 ¥
(0.023) (0.015) (0.013)
Chems 1002 v 0.981 0.965
(0.011) (0.012) (0.011)
BusEq 0913 ¥ 0.886 0.861
(0.006) (0.007) (0.006)
Telem 1.0 v 0.975 0.045
(0.014) (0.014) (0.013)
Utils 1.050 v 0.957 0.990 v
(0.032) (0.023) (0.020)
Shops  0.987 v 0.983 0.046 ¥+
(0.009) (0.009) (0.009)
Hith 1.009 v 0,99 * 0.058
(0.011) (0.012) (0.010)
Money ~ 0.986 * v 0,982 ** v 0.928
(0.006) (0.006) (0.007)
Other 1011 v 1.010 * 0.074
(0.006) (0.006) (0.006)
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Figure: Parameter estimates of all correlation models across industries
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Concluding comments

= Compare to other dynamic conditional correlation models, our dynamic
partial correlation model introduced here has several advantages:

A Unlike the matrix equations in Creal et al. (2011), Opschoor et al. (2018, 2021),
and Hafner and Wang (2021), there is no complicated correlation constraint.

A Precise stationarity, ergodicity and invertibility conditions exist.

A The parameters can be estimated recursively for a given value of v, therefore,
our set-up is perfectly scalable to higher dimensions.

A The aymptotic theory of the MLE is available.
A The model works nicely in practice, in particular for beta hedging.

A In a controlled simulation setting we show that the new partial correlation
model outperforms the considered benchmarks
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Table: MSE, MAE and Frobenious norm simulation results for three different

correlation models

Note: the labels PCorr, t-GAS and t-DCC indicate the new score-driven partial correlation model,
the Student’s t GAS model of Creal et al. (2011) with hypersphere parameterization, and the t-cDCC
model of Engle (2002) with a multivariate Student'’s t log-likelihood, respectively. Results are based
on 300 Monte Carlo experiments with sample size T = 1000 and N = 4. True correlation paths
used in the data generating process are given from 100-day rolling window estimates of empirical
correlation matrices of the series (HML, SMB, Mkt - RF, BusEq).

MSE MAE

MSE MAE Frobenius

Gaussian

Student t7

PCorr 0.0174 0.1036
t-GAS 0.0264  0.1094
t-cDCC  0.0268 0.1177

0.0192 0.1106 0.4543
0.0222  0.1204 0.4898
0.0273  0.1303 0.5386
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Figure: Comparison of the mean of the Monte Carlo simulation of the filtered
conditional correlation coefficients with Student’'s t DGP with v = 7.
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